TURBOCHARGER


A turbocharger, or turbo, is an air compressor used for forced-induction of an internal combustion engine. Like a supercharger, the purpose of a turbocharger is to increase the mass of air entering the engine to create more power. However, a turbocharger differs in that the compressor is powered by a turbine driven by the engine's own exhaust gases.

Early manufacturers of turbochargers referred to them as "turbosuperchargers". A supercharger is an air compressor used for forced induction of an engine. Logically then, adding a turbine to turn the supercharger would yield a "turbosupercharger". However, the term was soon shortened to "turbocharger". This is now a source of confusion, as the term "turbosupercharged" is sometimes used to refer to an engine that uses both a crankshaft-driven supercharger and an exhaust-driven turbocharger.

Some companies such as Teledyne Continental Motors still use the term turbosupercharger in its original sense. For the purposes of this article, the more modern terms turbocharger and turbo are used.

A turbocharger consists of a turbine and a compressor linked by a shared axle. The turbine inlet receives exhaust gases from the engine causing the turbine wheel to rotate. This rotation drives the compressor, compressing ambient air and delivering it to the air intake manifold of the engine at higher pressure, resulting in a greater amount of the air entering the cylinder. In some instances, compressed air is routed through an intercooler before introduction to the intake manifold.

The objective of a turbocharger is the same as a supercharger; to improve upon the size-to-output efficiency of an engine by solving one of its cardinal limitations. A naturally aspirated automobile engine uses only the downward stroke of a piston to create an area of low pressure in order to draw air into the cylinder through the intake valves. Because the pressure in the atmosphere is no more than approximately 14.7 psi, there ultimately will be a limit to the pressure difference across the intake valves and thus the amount of airflow entering the combustion chamber. This ability to fill the cylinder with air is its volumetric efficiency. Because the turbocharger increases the pressure at the point where air is entering the cylinder, a greater mass of air will be forced in as the inlet manifold pressure increases. The additional air makes it possible to add more fuel, increasing the power and torque output of the engine.

Because the pressure in the cylinder must not go too high to avoid detonation and physical damage, the intake pressure must be controlled by controlling the rotational speed of the turbocharger. The control function is performed by a wastegate, which routes some of the exhaust flow away from the exhaust turbine. This controls shaft speed and regulates air pressure in the intake manifold.

The application of a compressor to increase pressure at the point of cylinder air intake is often referred to as forced induction. Centrifugal superchargers compress air in the same fashion as a turbocharger. However, the energy to spin the supercharger is taken from the rotating output energy of the engine's crankshaft as opposed to normally exhausted gas from the engine. Superchargers use output energy from an engine to achieve a net gain, which must be provided from some of the engine's total output. Turbochargers, on the other hand, convert some of the piston engine's exhaust into useful work. This energy would otherwise be wasted out the exhaust. This means that a turbocharger is a more efficient use of the heat energy obtained from the fuel than a supercharger.


History
The turbocharger was invented by Swiss engineer Alfred Büchi. His patent for a turbo charger was applied for use in 1905. Diesel ships and locomotives with turbochargers began appearing in the 1920s.

Aviation
One of the first applications of a turbocharger to a non-Diesel engine came when General Electric engineer Sanford Moss attached a turbo to a V12 Liberty aircraft engine. The engine was tested at Pikes Peak in Colorado at 14,000 feet (4,300 m) to demonstrate that it could eliminate the power losses usually experienced in internal combustion engines as a result of reduced air pressure and density at high altitude.

Turbochargers were first used in production aircraft engines in the 1930s before World War II. The primary purpose behind most aircraft-based applications was to increase the altitude at which the airplane can fly, by compensating for the lower atmospheric pressure present at high altitude. Aircraft such as the Lockheed P-38, Boeing B-17 Flying Fortress and Republic P-47 all used turbochargers to increase high altitude engine power.

Production Automobiles
The first Turbo-Diesel truck was produced by the "Schweizer Maschinenfabrik Saurer" (Swiss Machine Works Saurer) 1938 .

The first production turbocharged automobile engines came from General Motors in 1962. The A-body Oldsmobile Cutlass Jetfire and Chevrolet Corvair Monza Spyder were both fitted with turbochargers.

The world's first production turbodiesel automobile was also introduced in 1978 by Mercedes-Benz with the launch of the 300SD turbodiesel. Today, nearly all automotive diesels are turbocharged.


The Corvair's innovative turbocharged flat-6 engine.
The turbo, located at top right, feeds pressurized air into the engine
through the chrome T-tube visible spanning the engine from left to right.


Competition cars
The turbocharger first hit the automobile racing world in 1952 when Fred Agabashian qualified for pole position at the Indianapolis 500 and led for 100 miles (160 km) before tire shards disabled the compressor. Offenhauser's turbocharged engines returned to Indianapolis in 1966, with victories coming in 1968. The Offenhauser turbo peaked at over 1,000 hp (750 kW) in 1973, while Porsche dominated the Can-Am series with a 1,100 hp (820 kW) 917/30. Turbocharged cars dominated the Le Mans between 1976 and 1988, and then from 2000-2007.

In Formula One, in the so called "Turbo Era" of 1977 until 1989, engines with a capacity of 1500 cc could achieve anywhere from 1000 to 1500 hp (746 to 1119 kW) (Renault, Honda, BMW, Ferrari). Renault was the first manufacturer to apply turbo technology in the F1 field, in 1977. The project's high cost was compensated for by its performance, and led to other engine manufacturers following suit. The Turbo-charged engines took over the F1 field and ended the Ford Cosworth DFV era in the mid 1980s. However, the FIA decided that turbos were making the sport too dangerous and expensive, and from 1987 onwards, the maximum boost pressure was reduced before the technology was banned completely for 1989.

In Rallying, turbocharged engines of up to 2000 cc have long been the preferred motive power for the Group A/NWorld Rally Car (top level) competitors, due to the exceptional power-to-weight ratios (and enormous torque) attainable. This combines with the use of vehicles with relatively small bodyshells for manoeuvreability and handling. As turbo outputs rose to similar levels as the F1 category (see above), the FIA, rather than banning the technology, enforced a restricted turbo inlet diameter (currently 34 mm).


Design details

Components
The turbocharger has four main components. The turbine (almost always a radial turbine) and impeller/compressor wheels are each contained within their own folded conical housing on opposite sides of the third component, the center housing/hub rotating assembly (CHRA).


turbocharger mock-up

The housings fitted around the compressor impeller and turbine collect and direct the gas flow through the wheels as they spin. The size and shape can dictate some performance characteristics of the overall turbocharger. Often the same basic turbocharger assembly will be available from the manufacturer with multiple housing choices for the turbine and sometimes the compressor cover as well. This allows the designer of the engine system to tailor the compromises between performance, response, and efficiency to application or preference.

The turbine and impeller wheel sizes also dictate the amount of air or exhaust that can be flowed through the system, and the relative efficiency at which they operate. Generally, the larger the turbine wheel and compressor wheel, the larger the flow capacity. Measurements and shapes can vary, as well as curvature and number of blades on the wheels.

The center hub rotating assembly houses the shaft which connects the compressor impeller and turbine. It also must contain a bearing system to suspend the shaft, allowing it to rotate at very high speed with minimal friction. For instance, in automotive applications the CHRA typically uses a thrust bearing or ball bearing lubricated by a constant supply of pressurized engine oil. The CHRA may also be considered "water cooled" by having an entry and exit point for engine coolant to be cycled. Water cooled models allow engine coolant to be used to keep the lubricating oil cooler, avoiding possible oil coking from the extreme heat found in the turbine.


On the left, the brass oil drain connection,
on the right are the braided oil supply line and water coolant line connections



Compressor impeller side with the cover removed



Turbine side housing removed

Pressure increase
In the automotive world, boost refers to the increase in pressure that is generated by the turbocharger in the intake manifold that exceeds normal atmospheric pressure. Atmospheric pressure is approximately 14.7psi or 1.0 Bar, and anything above this level is considered to be boost. The level of boost may be shown on a pressure gauge, usually in bar, psi or possibly kPa. This is representative of the extra air pressure that is achieved over what would be achieved without the forced induction. Manifold pressure should not be confused with the volume of air that a turbo can flow.

In contrast, the instruments on aircraft engines measure absolute pressure in inches of mercury. Absolute pressure is the amount of pressure above a total vacuum. The ICAO standard atmospheric pressure is 29.92 inches of mercury at sea level. Most modern aviation turbochargers are not designed to increase manifold pressures above this level, as aircraft engines are commonly air-cooled and excessive pressures increase the risk of overheating, pre-ignition, and detonation. Instead, the turbo is only designed to hold a pressure in the intake manifold equal to sea-level pressure as the altitude increases and air pressure drops. This is called turbo-normalizing.

Boost pressure is limited to keep the entire engine system, including the turbo, inside its thermal and mechanical design operating range. The speed and thus the output pressure of the turbo is controlled by the wastegate which shunts the exhaust gases away from the exhaust side turbine.

The maximum possible boost depends on the fuel's octane rating and the inherent tendency of any particular engine towards detonation. Premium gasoline or racing gasoline can be used to prevent detonation within reasonable limits. Ethanol, methanol, liquefied petroleum gas (LPG) and diesel fuels allow higher boost than gasoline, because of these fuels' combustion characteristics. To obtain high boost levels, all elements have to be upgraded such as larger fuel pump, bigger injectors, lower compression, right air/fuel ratio, and head-gasket.


Wastegate
By spinning at a relatively high speed the compressor turbine draws in a large volume of air and forces it into the engine. As the turbocharger's output flow volume exceeds the engine's volumetric flow, air pressure in the intake system begins to build. The speed at which the assembly spins is proportional to the pressure of the compressed air and total mass of air flow being moved. Since a turbo can spin to RPMs far beyond what is needed, or of what it is safely capable of, the speed must be controlled. A wastegate is the most common mechanical speed control system, and is often further augmented by an electronic or manual boost controller. The main function of a wastegate is to allow some of the exhaust to bypass the turbine when the set intake pressure is achieved. Passenger cars have wastegates that are integral to the turbocharger.


A wastegate installed next to the turbocharger

Anti-Surge/Dump/Blow Off Valves
Turbo charged engines operating at wide open throttle and high rpm require a large volume of air to flow between the turbo and the inlet of the engine. When the throttle is closed compressed air will flow to the throttle valve without an exit (i.e. the air has nowhere to go).

This causes a surge which can raise the pressure of the air to a level which can be destructive to the engine (e.g. damage may occur to the throttle plate, induction pipes may burst.) The surge will also decompress back across the turbo as this is the only path that the air can take. This sudden flow of air will often cause turbulence and a subsequent whistling noise as the air moves past the compressor wheel.

The reverse flow back across the turbo acts on the compressor wheel and causes the turbine shaft to reduce in speed quicker than it would naturally. When the throttle is opened again, the turbo will have to make up for lost momentum and will take longer to achieve the required speed, as turbo speed is proportional to boost/volume flow. (This is known as Turbo Lag) In order to prevent this from happening, a valve is fitted between the turbo and inlet which vents off the excess air pressure. These are known as an anti-surge, bypass, blow-off (BOV) or dump valve. They are normally operated by engine vacuum.

The primary use of this valve is to maintain the turbo spinning at a high speed. The air is usually recycled back into the turbo inlet but can also be vented to the atmosphere. Recycling back into the turbo causes the venting sound to be reduced and is required on an engine that uses a mass-airflow fuel injection system (as opposed to a speed-density system). The reason for this is that the airflow sensor is normally located before the turbo and the ECU will inject enough fuel for the amount of air that flows through it. If some of the air that has gone through the sensor is dumped into the atmosphere, the engine will be over fueled until the BOV closes again. The benefits of venting to the atmosphere are simply the ease of installation (because there is no need to run an extra hose to plumb the charge back into the system) and that it makes a sound considered desirable by some. A dump valve will shorten the time needed to respool the turbo after sudden engine deceleration.

Since a turbocharger increases the specific horsepower output of an engine, the engine will also produce increased amounts of heat. This can sometimes be a problem when fitting a turbocharger to a motor that was not designed to cope with high heat loads.

It is another form of cooling that has the largest impact on fuel efficiency: charge cooling. Even with the benefits of intercooling, the total compression in the combustion chamber is greater than that in a naturally-aspirated engine. To avoid knock while still extracting maximum power from the engine, it is common practice to introduce extra fuel into the charge for the sole purpose of cooling. While this seems counterintuitive, this fuel is not burned. Instead, it absorbs and carries away heat when it changes phase from liquid mist to gas vapor. Also, because it is more dense than the other inert substance in the combustion chamber, nitrogen, it has a higher specific heat and more heat capacitance. It "holds" this heat until it is released in the exhaust stream, preventing destructive knock. This thermodynamic property allows manufacturers to achieve good power output with common pump fuel at the expense of fuel economy and emissions. The stoichiometric Air-to-Fuel ratio (A/F) for combustion of gasoline is 14.7:1. A common A/F in a turbocharged engine while under full design boost is approximately 12:1. Richer mixtures are sometimes run when the design of the system has flaws in it such as a catalytic converter which has limited endurance of high exhaust temperatures or the engine has a compression ratio that is too high for efficient operation with the fuel given. An engine that requires an overly rich fuel mixture is an indication of a poorly engineered turbo system.

Turbochargers also provide more direct fuel savings when compared to a supercharger. The volume, speed and pressure of exhaust gases flowing out of the engine are not only related to engine speed, but also to engine load. An engine under a heavy load has higher internal pressures and temperatures than an engine running under a light load at the same speed. This effect is found on all internal combustion engines, but is especially true for diesel engines. Because the turbocharger is connected to the engine's fuel system, which regulates the supply of fuel in relation to the boost being generated, extra fuel is only delivered when the engine is under load and boost pressures are high. A vehicle with a turbocharged engine travelling at a constant speed on a flat road is placing a relatively small load on its engine- exhaust pressure, boost and fuel delivery is therefore low, and fuel consumption will be close to that of a naturally-aspirated vehicle. The same vehicle maintaining the same speed up a hill will place the engine under a greater load, generating a greater exhaust pressure, raising turbocharger speed, increasing boost pressure and thus causing more fuel to be delivered and more power to be produced. Because boost is related to engine load, the turbocharger only runs at full capacity when the engine is under load. A supercharger, directly geared to the engine, has boost relating solely to engine speed, resulting in higher fuel consumption.

Lastly, the efficiency of the turbocharger itself can have an impact on fuel efficiency. Using a small turbocharger will give quick response and low lag at low to mid RPMs, but can choke the engine on the exhaust side and generate huge amounts of pumping-related heat on the intake side as RPMs rise. A large turbocharger will be very efficient at high RPMs, but is not a realistic application for a street driven automobile. Variable vane and ball bearing technologies can make a turbo more efficient across a wider operating range, however, other problems have prevented this technology from appearing in more road cars (see Variable geometry turbocharger). Currently, the Porsche 911 (997) Turbo is the only gasoline car in production with this kind of turbocharger, although in Europe turbos of this type are rapidly becoming standard-fitment on turbodiesel cars, vans and other commercial vehicles, because they can greatly enhance the diesel engine's characteristic low-speed torque. One way to take advantage of the different operating regimes of the two types of supercharger is sequential turbocharging, which uses 2 smaller turbochargers, with one operating at low RPM while the other is added in at higher RPM. This allows the engine to have excellent response while still having top end power. Vehicles such as the 1993-1998 Toyota Supra Twin Turbo and the 1993-1995 RX-7 Twin Turbo use this system.

The engine management systems of most modern vehicles can control boost and fuel delivery according to charge temperature, fuel quality, and altitude, among other factors. Some systems are more sophisticated and aim to deliver fuel even more precisely based on combustion quality. For example, the Trionic-7 system from Saab Automobile provides immediate feedback on the combustion while it is occurring by using the spark plug to measure the cylinder pressure via the ionization voltage over the spark plug gap.

The new 2.0L TFSI turbo engine from Volkswagen/Audi incorporates lean burn and direct injection technology to conserve fuel under low load conditions. It is a very complex system that involves many moving parts and sensors in order to manage airflow characteristics inside the chamber itself, allowing it to use a stratified charge with excellent atomization. The direct injection also has a tremendous charge cooling effect enabling engines to use higher compression ratios and boost pressures than a typical port-injection turbo engine.


Automotive design details
The ideal gas law states that when all other variables are held constant, if pressure is increased in a system so will temperature. Here exists one of the negative consequences of turbocharging, the increase in the temperature of air entering the engine due to compression.

A turbo spins very fast; most peak between 20,000 and 100,000 RPM (using low inertia turbos, 150,000-250,000 RPM) depending on size, weight of the rotating parts, boost pressure developed and compressor design. Such high rotation speeds would cause problems for standard ball bearings leading to failure so most turbo-chargers use fluid bearings. These feature a flowing layer of oil that suspends and cools the moving parts. The oil is usually taken from the engine-oil circuit. Some turbochargers use incredibly precise ball bearings that offer less friction than a fluid bearing but these are also suspended in fluid-dampened cavities. Lower friction means the turbo shaft can be made of lighter materials, reducing so-called turbo lag or boost lag. Some car makers use water cooled turbochargers for added bearing life. This can also account for why many tuners upgrade their standard journal bearing turbos (such as a T25) which use a 270 degree thrust bearing and a brass journal bearing which has only 3 oil passages, to a 360 degree bearing which has a beefier thrust bearing and washer having 6 oil passages to enable better flow, response and cooling efficiency. Turbochargers with foil bearings are in development which eliminates the need for bearing cooling or oil delivery systems, thereby eliminating the most common cause of failure, while also significantly reducing turbo lag.

To manage the upper-deck air pressure, the turbocharger's exhaust gas flow is regulated with a wastegate that bypasses excess exhaust gas entering the turbocharger's turbine. This regulates the rotational speed of the turbine and thus the output of the compressor. The wastegate is opened and closed by the compressed air from turbo (the upper-deck pressure) and can be raised by using a solenoid to regulate the pressure fed to the wastegate membrane. This solenoid can be controlled by Automatic Performance Control, the engine's electronic control unit or an after market boost control computer. Another method of raising the boost pressure is through the use of check and bleed valves to keep the pressure at the membrane lower than the pressure within the system.

Some turbochargers, called Variable-Geometry or Variable-Nozzle turbos, use a set of vanes in the exhaust housing to maintain a constant gas velocity across the turbine, the same kind of control as used on power plant turbines. Other designations for this type of turbo include Variable Area Turbine Nozzle, Variable Turbine Geometry, and Variable Vane Turbine. Such turbochargers have minimal lag like a small conventional turbocharger and can achieve full boost as low as 1,500 engine rpm, yet remain efficient as a large conventional turbocharger at higher engine speeds; they are also used in diesel engines. In many setups these turbos do not use a wastegate[citation needed]; the vanes are controlled by a membrane identical to the one on a wastegate but the mechanism is different.

The first production car to use a variable-nozzle turbos was the limited-production 1989 Shelby CSX-VNT equipped with a 2.2L petrol engine[citation needed]. The Shelby CSX-VNT uses a Garrett turbo designated VNT-25, a variable-geometry version of Garrett's T-25. This type of turbine is called a Variable Nozzle Turbine (VNT). A number of other Chrysler Corporation vehicles used this turbocharger in 1990, including the Dodge Daytona and Dodge Shadow. These engines produced 174 horsepower (130 kW) and 225 foot-pounds force (305 N·m) of torque, the same horsepower as the standard intercooled 2.2 liter engines but with 25 more pound-feet of torque and greatly reduced turbo lag.

The 2006 Porsche 911 Turbo has a twin turbocharged 3.6-litre flat six, and the turbos used are BorgWarner's Variable Geometry Turbos (VGTs). This is the third time the technology has been implemented on a production petrol car, after the 1989-90 Chrysler Corporation vehicles and the 1992 Peugeot 405 T16.

Volkswagen has used Garrett's VNT turbos on the TDI engines of the Mark III and Mark IV series Golf (or Bora) and Jetta (or Vento). The VNT turbos allow the characteristic low-end torque of the diesel engine to be enhanced utilized while also providing extra horsepower often lacking on diesel engines.

Motorcycles
Using turbochargers to gain performance without a large gain in weight was very appealing to the Japanese factories in the 1980s. The first example of a turbocharged bike is the 1978 Kawasaki Z1R TC. It used a Rayjay ATP turbo kit to build 5 lb (2.3 kg) of boost, bringing power up from ~90 hp to ~105 hp. However, it was only marginally faster than the standard model. A US Kawasaki importer came up with the idea of modifying the Z1-R with a turbocharging kit as a solution to the Z1-R being a low selling bike. The 112 hp Kawasaki GPz750 Turbo was manufactured from 1983 to 1985. This motorcycle had little in common with the normally aspirated with the Kawasaki GPz750. Nearly every component was altered or strengthened for this GPz 750 Turbo to handle the 20 hp increase in power. 1982 Honda released the CX500T featuring a carefully developed turbo (as opposed to the Z1-R's bolt-on approach).( It's Turbo had a rotation speed of 200,000rpm ) The development of the CX500T was riddled with problems; due to being a V-twin engine the intake periods in the engine rotation are staggered leading to periods of high intake and long periods of no intake at all. Designing around these problems increased the price of the bike, and the performance still was not as good as the cheaper CB900.( a 16 valve in line four) During these years, Suzuki produced the XN85, a 650cc in line four producing 85 bhp, and Yamaha produced the Seca Turbo.( both with Carburettor fuel systems ) Since the mid 1980's, no manufactures have produced turbocharged motorcycles making these bike a bit of a factory an educational experience; as of 2007 no factories offer turbocharged motorcycles (although the Suzuki B-King prototype featured a supercharged Hayabusa engine).


Reliability
Turbochargers can be damaged by dirty or ineffective oil, and most manufacturers recommend more frequent oil changes for turbocharged engines. Many owners and some companies recommend using synthetic oils, which tend to flow more readily when cold and do not break down as quickly as conventional oils. Because the turbocharger will heat when running, many recommend letting the engine idle for one to three minutes before shutting off the engine if the turbocharger was used shortly before stopping (most manufacturers specify a 10-second period of idling before switching off to ensure the turbocharger is running at its idle speed to prevent damage to the bearings when the oil supply is cut off). This lets the turbo rotating assembly cool from the lower exhaust gas temperatures, and ensures that oil is supplied to the turbocharger while the turbine housing and exhaust manifold are still very hot; otherwise coking of the lubricating oil trapped in the unit may occur when the heat soaks into the bearings, causing rapid bearing wear and failure when the car is restarted. Even small particles of burnt oil will accumulate and lead to choking the oil supply and failure. This problem is less pronounced in diesel engines, due to the lower exhaust temperatures and generally slower engine speeds.

A turbo timer can keep an engine running for a pre-specified period of time, to automatically provide this cool-down period. Oil coking is also eliminated by foil bearings. A more complex and problematic protective barrier against oil coking is the use of watercooled bearing cartridges. The water boils in the cartridge when the engine is shut off and forms a natural recirculation to drain away the heat. Nevertheless, it is not a good idea to shut the engine off while the turbo and manifold are still glowing.

In custom applications utilizing tubular headers rather than cast iron manifolds, the need for a cooldown period is reduced because the lighter headers store much less heat than heavy cast iron manifolds.


Lag
A lag is sometimes felt by the driver of a turbocharged vehicle as a delay between pushing on the accelerator pedal and feeling the turbo kick-in. This is symptomatic of the time taken for the exhaust system driving the turbine to come to high pressure and for the turbine rotor to overcome its rotational inertia and reach the speed necessary to supply boost pressure. The directly-driven compressor in a supercharger does not suffer this problem. (Centrifugal superchargers do not build boost at low RPMs like a positive displacement supercharger will). Conversely on light loads or at low RPM a turbocharger supplies less boost and the engine is less efficient than a supercharged engine.

Lag can be reduced by lowering the rotational inertia of the turbine, for example by using lighter parts to allow the spool-up to happen more quickly. Ceramic turbines are a big help in this direction. Unfortunately, their relative fragility limits the maximum boost they can supply. Another way to reduce lag is to change the aspect ratio of the turbine by reducing the diameter and increasing the gas-flow path-length. Increasing the upper-deck air pressure and improving the wastegate response helps but there are cost increases and reliability disadvantages that car manufacturers are not happy about. Lag is also reduced by using a foil bearing rather than a conventional oil bearing. This reduces friction and contributes to faster acceleration of the turbo's rotating assembly. Variable-nozzle turbochargers (discussed above) eliminate lag.

Lag can be reduced with the use of multiple turbochargers. Another common method of equalizing turbo lag is to have the turbine wheel "clipped", or to reduce the surface area of the turbine wheel's rotating blades. By clipping a minute portion off the tip of each blade of the turbine wheel, less restriction is imposed upon the escaping exhaust gases. This imparts less impedance onto the flow of exhaust gases at low RPM, allowing the vehicle to retain more of its low-end torque, but also pushes the effective boost RPM to a slightly higher level. The amount of turbine wheel clipping is highly application-specific. Turbine clipping is measured and specified in degrees.

Lag is not to be confused with the boost threshold; however, many publications still make this basic mistake. The boost threshold of a turbo system describes the minimum engine RPM during full-throttle operation at which there is sufficient exhaust flow to the turbo to allow it to generate significant amounts of boost. Newer turbocharger and engine developments have caused boost thresholds to steadily decline to where day-to-day use feels perfectly natural. Putting your foot down at 1200 engine RPM and having no boost until 2000 engine RPM is an example of boost threshold and not lag. If lag was experienced in this situation, the RPM would either not start to rise for a short period of time after the throttle was increased, or increase slowly for a few seconds and then suddenly build up at a greater rate as the turbo become effective. However, the term lag is used erroneously for boost threshold by many manufacturers themselves.

Electrical boosting ("E-boosting") is a new technology under development; it uses a high speed electrical motor to drive the turbocharger to speed before exhaust gases are available, e.g. from a stop-light. The electric motor is about an inch long.

Race cars often utilize an Anti-Lag System to completely eliminate lag at the cost of reduced turbocharger life.

On modern diesel engines, this problem is virtually eliminated by utilizing a variable geometry turbocharger.


Twin turbochargers

Parallel
Some engines, such as V-type engines, utilize two identically-sized but smaller turbos, each fed by a separate set of exhaust streams from the engine. The two smaller turbos produce the same (or more) aggregate amount of boost as a larger single turbo, but since they are smaller they reach their optimal RPM, and thus optimal boost delivery, faster. Such an arrangement of turbos is typically referred to as a parallel twin-turbo system.

Sequential
Some car makers combat lag by using two small turbos (such as Nissan, Toyota, Subaru, Maserati, Mazda, and Audi). A typical arrangement for this is to have one turbo active across the entire rev range of the engine and one coming on-line at higher RPM. Early designs would have one turbocharger active up to a certain RPM, after which both turbochargers are active. Below this RPM, both exhaust and air inlet of the secondary turbo are closed. Being individually smaller they do not suffer from excessive lag and having the second turbo operating at a higher RPM range allows it to get to full rotational speed before it is required. Such combinations are referred to as a sequential twin-turbo. Sequential twin-turbos are usually much more complicated than a single or parallel twin-turbo systems because they require what amounts to three sets of pipes-intake and wastegate pipes for the two turbochargers as well as valves to control the direction of the exhaust gases. An example of this is the current BMW E60 5-Series 535d. Another well-known example is the 1993-2002 Toyota Supra. Many new diesel engines use this technology to not only eliminate lag but also to reduce fuel consumption and reduce emissions.


Boost Threshold
Turbochargers start producing boost only above a certain exhaust mass flow rate (depending on the size of the turbo) which is determined by the engine displacement, rpm, and throttle opening. Without an appropriate exhaust gas flow, they logically cannot force air into the engine. The point at full throttle in which the mass flow in the exhaust is strong enough to force air into the engine is known as the boost threshold rpm. Engineers have, in some cases, been able to reduce the boost threshold rpm to idle speed to allow for instant response.[citation needed].

Both Lag and Threshold characteristics can be acquired through the use of a compressor map using compressor map and a mathematical equation.


Automotive Applications
Turbocharging is very common on diesel engines in conventional automobiles, in trucks, locomotives, for marine and heavy machinery applications. In fact, for current automotive applications, non-turbocharged diesel engines are becoming increasingly rare[citation needed]. Diesels are particularly suitable for turbocharging for several reasons:
Naturally-aspirated diesels develop less power than gasoline engines of the same displacement, and will weigh significantly more because diesel engines require heavier, stronger components. This gives such engines a poor power-to-weight ratio, which turbocharging can dramatically improve with only slight additional weight.
Diesel engines operate within a speed range, facilitating the use of a narrowly-optimized turbocharger.
Diesel engines are not prone to the detonation that arises from high (or forced) cylinder pressure and can damage gasoline engines.

Today, turbochargers are most commonly used on gasoline engines in high-performance automobiles and diesel engines in transportation and other industrial equipment[citation needed]. Small cars in particular benefit from this technology, as there is often little room to fit a large engine. Volvo and Saab have produced turbocharged cars for many years, the turbo Porsche 944's acceleration performance was very similar to that of the larger-engined non-turbo Porsche 928, and Chrysler Corporation built numerous turbocharged cars in the 1980s and 1990s.

Aircraft
A more natural use of the turbocharger is with aircraft engines. As an aircraft climbs to higher altitudes the pressure of the surrounding air quickly falls off. At 5,486 m (18,000 ft) the air is at half the pressure of sea level, and the airframe only experiences half the aerodynamic drag. However, since the charge in the cylinders is being pushed in by this air pressure, it means that the engine will normally produce only half-power at full throttle at this altitude. Pilots would like to take advantage of the low drag at high altitudes in order to go faster, but a naturally aspirated engine will not produce enough power at the same altitude to do so.


Altitude effects
A turbocharger remedies this problem by compressing the air back to sea-level pressures; or even much higher; in order to produce rated power at high altitude. Since the size of the turbocharger is chosen to produce a given amount of pressure at high altitude, the turbocharger is over-sized for low altitude. The speed of the turbocharger is controlled by a wastegate. Early systems used a fixed wastegate, resulting in a turbocharger that functioned much like a supercharger. Later systems utilized an adjustable wastegate, controlled either manually by the pilot or by an automatic hydraulic or electric system. When the aircraft is at low altitude the wastegate is usually fully open, venting all the exhaust gasses overboard. As the aircraft climbs and the air density drops, the wastegate must continually close in small increments to maintain full power. The altitude at which the wastegate is full closed and the engine is still producing full rated power is known as the critical altitude.

The downside of turbocharging is that compressing the air increases its temperature. As with diesel engines, the most common solution to this problem is to add an aftercooler.


Comparison to supercharging
A supercharger inevitably requires some energy to be bled from the engine to drive the supercharger. On the single-stage single-speed supercharged Rolls Royce Merlin engine for instance, the supercharger uses up about 150 horsepower (110 kW). Yet the benefits outweigh the costs, for that 150 hp (110 kW), the engine is delivering 1,000 hp (750 kW) when it would otherwise deliver 750 hp (560 kW), a net gain of 250 hp. This is where the principle disadvantage of a supercharger becomes apparent: The engine has to burn extra fuel to provide power to turn the supercharger. The increased charge density increases the engine's specific power and power to weight ratio, but also increases the engine's specific fuel consumption. This increases the cost of running the aircraft and reduces its overall range. On the other hand, a turbocharger is driven using the exhaust gases. The amount of power in the gas is proportional to the difference between the exhaust pressure and air pressure, and this difference increases with altitude, allowing a turbocharger to compensate for changing altitude without using up any extra power.

Another key disadvantage of supercharged engines is that they are controlled entirely by the pilot, introducing the possibility of human error which could damage the engine and endanger the aircraft. With a supercharged aircraft engine, the pilot must continually adjust the throttle to maintain the required manifold pressure during ascent or descent. The pilot must also take great care to avoid overboosting the engine and causing damage, especially during emergencies such as go-arounds. In contrast, modern turbocharger systems use an automatic wastegate which controls the manifold pressure within parameters preset by the manufacturer. For these systems, as long as the control system is working properly and the pilot's control commands are smooth and deliberate, a turbocharger will not overboost the engine and damage it.

Yet the vast majority of WWII engines used superchargers, because they maintained three significant manufacturing advantages over turbochargers, which were larger, involved extra piping, and required exotic high-temperature materials in the turbine and pre-turbine section of the exhaust system. The size of the piping alone is a serious issue; consider that the Vought F4U and Republic P-47 used the same engine but the huge barrel-like fuselage of the latter was, in part, needed to hold the piping to and from the turbocharger in the rear of the plane. Turbocharged piston engines are also subject to many of the same operating restrictions as gas turbine engines. Pilots must make smooth, slow throttle adjustments to avoid overshooting their target manifold pressure. The fuel mixture must often be adjusted far on the rich side of the peak exhaust gas temperature to avoid overheating the turbine when running at high power settings. In systems using a manually-operated wastegate, the pilot must be careful not to exceed the turbocharger's maximum RPM. Turbocharged engines require a cooldown period after landing to prevent thermal shock from cracking the turbo or exhaust system. Turbocharged engines require frequent inspections of the turbocharger and exhaust systems for damage due to the increased heat, increasing maintenance costs.

Today, most general aviation aircraft are naturally aspirated. The small number of modern aviation piston engines designed to run at high altitudes generally use a turbocharger or turbo-normalizer system rather than a supercharger. The change in thinking is largely due to economics. Aviation gasoline was once plentiful and cheap, favoring the simple but fuel-hungry supercharger. As the cost of fuel has increased, the supercharger has fallen out of favor.

Turbocharged aircraft often occupy a performance range in between that of normally-aspirated piston-powered aircraft and turbine-powered aircraft. The increased maintenance costs of a turbo-charged engine are considered worthwhile for this purpose, as a turbocharged piston engine is still far cheaper than any turbine engine.


Relationship to Gas Turbine Engines
Prior to World War II, Sir Frank Whittle started his experiments on early turbojet engines. Due to a lack of sufficient materials as well as funding, initial progress was slow. However, turbochargers were used extensively in military aircraft during World War II to enable them to fly very fast at very high altitudes. The demands of the war led to constant advances in turbocharger technology, particularly in the area of materials. This area of study eventually crossed over in to the development of early gas turbine engines. Those early turbine engines were little more than a very large turbocharger with the compressor and turbine connected by a number of combustion chambers. The cross over between the two has been shown in an episode of the TV show Scrapheap Challenge where contestants were able to build a functioning Jet Engine using an ex-automotive turbocharger as a compressor.

Consider also, for example, that General Electric manufactured turbochargers for military aircraft and held several patents on their electric turbo controls during the war, then used that expertise to very quickly carve out a dominant share of the gas turbine market which they have held ever since.


Advantages and Disadvantages

Advantages
More specific power over naturally aspirated engine. This means a turbocharged engine can achieve more power from same engine volume.
Better thermal efficiency over both naturally aspirated and supercharged engine when under full load (i.e. on boost). This is because the excess exhaust heat and pressure, which would normally be wasted, contributes some of the work required to compress the air.
Weight/Packaging. Smaller and lighter than alternative forced induction systems and may be more easily fitted in an engine bay.
Fuel Economy. Although adding a turbocharger itself does not save fuel, it will allow a vehicle to use a smaller engine while achieving power levels of a much larger engine, while attaining near normal fuel economy while off boost/cruising. This is because without boost, only the normal amount of fuel and air are combusted.

Disadvantages
Lack of responsiveness if an incorrectly sized turbocharger is used. If a turbocharger that is too large is used it reduces throttle response as it builds up boost slowly otherwise know as "lag". However, doing this may result in more peak power.
Boost threshold. A turbocharger starts producing boost only above a certain rpm due to a lack of exhaust gas volume to overcome inertia of rest of the turbo propeller. This results in a rapid and nonlinear rise in torque, and will reduce the usable power band of the engine. The sudden surge of power could overwhelm the tires and result in loss of grip, which could lead to understeer/oversteer, depending on the drivetrain and suspension setup of the vehicle. Lag can be disadvantageous in racing. If throttle is applied in a turn, power may unexpectedly increase when the turbo winds up, which can induce wheelspin.
Cost. Turbocharger parts are costly to add to naturally aspirated engines. Heavily modifying OEM turbocharger systems also require extensive upgrades that in most cases requires most (if not all) of the original components to be replaced.
Complexity. Further to cost, turbochargers require numerous additional systems if they are not to damage an engine. Even an engine under only light boost requires a system for properly routing (and sometimes cooling) the lubricating oil, turbo-specific exhaust manifold, application specific downpipe, boost regulation, and proper gauges (not intrinsically necessary, but very highly recommended). In addition inter-cooled turbo engines require additional plumbing, while highly tuned turbocharged engines will require extensive upgrades to their lubrication, cooling, and breathing systems; while reinforcing internal engine and transmission parts.

[source : wikipedia]
Related posts :

HORSE POWER vs TORQUE

Introduction

An engine's horsepower and torque values are two things that are often talked about in automotive circles, but may be misunderstood. In this article, I will be looking at how those numbers affect a car's ability to accelerate. Carroll Shelby once said: "Horsepower sells cars, torque wins races." Let's see if that is actually true.


Assumptions

There is no road friction, or friction anywhere for that matter.
  1. There are no aerodynamic effects acting on the vehicles.
  2. The vehicles are on flat ground.
  3. There are no drivetrain losses. The transmission and rear axle are ideal.
  4. The vehicles are always moving at some non-zero speed.
  5. Gear changes take place instantaneously.
  6. The vehicles are at full throttle at all times.
  7. There is no turbo lag.
Obviously, none of these assumptions apply to real life, but they will make explanation of many concepts much simpler. Power will be measured in Horsepower. Power and Horsepower will be used interchangeably in this article. Torque will be measured in pound-feet, which will be abbreviated as lb-ft or just tq.


Torque, Work, Power and Gear

Torque
Torque is a force that tends to cause a rotation. A force applied at a non-zero distance from an object's centre will tend to rotate the object. This is easily seen in real life. If a wrench is placed on a bolt and a force is applied to the end of the wrench, the bolt will turn. If the same pulling force was applied directly to the bolt, it would not turn because the force's direction passes through the object's centre. The amount of torque is determined by multiplying the magnitude of the force by the force's distance from centre.



Diagram showing torque.



Torque can be used to create a force at a distance, as seen below.
On a car, this is how the wheel and tire apply force to the pavement.


Work
Work is not something that is brought up often when talking about cars. Work is defined as the transfer of energy from one system to another, such as a person pushing a cart. Mathematically, work is the product of force and distance, and has units such as foot-pounds or Newton-metres. The direction of force (or at least a component of it) must match the direction of motion for the force to be considered to have done work. Also, if there is no motion, no work has been done.



Work is done on the object by applying a force along a distance



Difference Between Torque and Work
Note that the units for both torque and work are the product of force and distance, yet torque and work are two different things. Torque is a force that tends to cause a rotation, which means that it does not actually cause an object to move along a distance. Work is a measure of energy transfer between systems, which may or may not have been done by a force from torque.




The difference between torque and work

On a rotating shaft, work is done by the force from torque. Torque is a force that tends to cause a rotation, and the shaft is rotating. The force is going round and round, and so is the shaft, so if the shaft was "unrolled", there would be a force traveling along a distance, which is work.



On a rotating shaft, the torque is doing the work



Power
Power is the amount of work that can be done in a certain amount of time, or "the rate of work", or "the rate of energy transfer between systems". The formula for calculating power is shown below:


Power is the product of force and distance over a period of time

The above equation can be rewritten in terms of force and speed, as seen below:


Using the definition of speed, power can be expressed in terms of force and speed


Shaft Power
On a rotating shaft, the force from torque is doing work. The rate of work is dependent upon the shaft's rotational speed. Thus, the amount of power that a rotating shaft has is the product of its rotational speed and its torque. Using arbitrary units, the power formula for a rotating shaft is:


Shaft power using arbitrary units


Units of Shaft Power
When using pound-feet as units of torque, revolutions per minute (RPM) for rotational speed, and horsepower for power, shaft power can be expressed with the following formula:


Shaft power in horsepower

The above power formula is often misinterpreted as showing that power and torque are the same thing, or that they somehow trade hands with each other at 5252RPM. This mistake is from the fact that a graph of torque in pound-feet and power in horsepower versus engine RPM has crossing lines at 5252RPM. Torque and power play the same role whether an engine is revving below, at, or above 5252RPM. Many diesel engines, and even some gas engines, are not even capable of revving that high at all.


5252RPM is not a significant point in a physical sense. It is merely the RPM
at which a graph of torque in pound-feet and power in horsepower would cross
when drawn on the same piece of paper. If different units were used,
the curves would cross at a different point, yet the principles of operation
would remain unchanged.

The above statements can be proven by changing the units for power and torque. Australians often use kilowatts for units of power, and Newton-metres for torque. With that, the shaft power formula becomes:


Shaft power in metric units

Using metric units, the unit conversion constant is 9549, not 5252 like it was when pound-feet and horsepower were being used. This means that a graph of power and torque versus revs using metric units would have crossing curves at 9549RPM instead of 5252RPM.

Australian engines obey the exact same laws of physics as American engines. The only real distinction between the two is that Aussie engines are designed to run upside down.


Gears
Gears are used to change the torque and rotational speed of a part of a system of rotating shafts, or to change the direction of the transmitted motion. An example of the former would be the car's transmission, while an example of the latter would be the rear axle gears.

An ideal (lossless) gear set transmits an equal amount of power to the output shaft as it received from the input shaft. This means that if a gearbox has a 2:1 gear ratio, the output shaft will be rotating half as fast as the input shaft, but will have double the torque. Below is a drawing that shows the effects of a gear set, using an abitrary ratio, GR.


The gearbox is given a certain amount of power, in the form of torque and revs.
It then puts out an equal amount of power, with the revs and torque
adjusted according to the gear ratio.


Formulae used for gears

It is interesting to point out that gears and electrical transformers are very similar. Gears change the torque and speed, while transformers change voltage and current. Both gears and transformers put out as much power as they receive.

A car battery produces 12 volts and a lot of current, but a spark plug needs up to 50,000 volts and very little current. An ignition coil, which is a transformer, trades away the excess current from the battery to make the high voltage needed for the spark plugs.


Drivetrain Gearing
A car's drivetrain uses multiple sets of gears to control how much of the engine's total power is going to torque, and how much is going to the rotational speed of the wheels.

All gasoline piston engines produce too little torque and too many revs to properly turn the wheels. With 27 inch tires, 6000RPM at the wheels would be 450mph. It also takes a lot more than a few hundred pounds of force to even move something as heavy as a passenger car. This is why all cars have drivetrains which are setup to divide the revs and multiply the torque.

Most cars are fitted with two sets of gearing between the engine and the wheels. The first set is the transmission, which multiplies the torque a certain amount, depending on what gear it is in. Typically, first gear has a ratio near 3:1, while the top gear has a ratio near 0.8:1. After the transmission, there is another set of gears which usually have a ratio of around 2.5:1 through 6.0:1, depending on the vehicle. Below is a diagram of a typical drivetrain found in most cars.


The drivetrain of a car is fitted with a transmission
and final drive gearing to adjust the engine's torque
and revs to accelerate the car.


The wheel torque and revs vary with the engine torque and revs,
and the gear ratios in between.

The reason that cars have transmissions with multiple gears is so that the engine can be kept within its operating rev range while the vehicle accelerates from rest to possibly over 200mph. In first gear, there is plenty of acceleration because of the torque multiplication, but very little speed before the engine revs to its redline. In second gear, there is slightly less acceleration, but a slightly higher speed before hitting the redline. This trend of higher speed and lower acceleration continues through each gear in the transmission.


Each transmission gear provides a different amount of acceleration and speed.
The combination of speed and acceleration is related to the power from the engine.


Accelerating a Car
Newton's second law of motion states that the acceleration of a body is related to the force being applied and the mass of the body, as seen below:


According to Newton's second law of motion, a greater force or a lower mass
will result in a greater acceleration.

In order for there to be any acceleration, the force must be applied at the same speed that the object is traveling, for a non-zero length of time. A force being applied at a certain speed for a period of time is power, therefore, the acceleration force on a moving object is determined by the power being applied at that speed.



The wheels receive torque and rotational speed from the engine,
and lay down a force onto the pavement. It is this force which
accelerates the vehicle. The car's speed is directly related
to the rotational speed of the wheel.


The acceleration of a moving object is equal to the power divided by the speed
and the mass. The product of speed and mass is known as momentum.


The acceleration force that the tire puts to the road comes from the torque at the wheels. This is why the acceleration force is often calculated by passing the engine torque through the drivetrain gearing and wheels, as seen in the formula below. I will refer to this method of calculating the acceleration force as the torque method.


The acceleration force can be calculated by passing the engine torque through
the entire drivetrain and down the tire radius on to the road.

If the vehicle's speed and the power of its engine is known at a given instant, the force of acceleration can be calculated without knowing anything about the drivetrain gearing, tire diameter, or even the engine torque. I will refer to this method of calculating the acceleration force as the power method. Below is the formula for the power method when using imperial units.


When the power and speed are known, the acceleration force can be calculated directly
without knowing anything about the drivetrain.


The torque method and the power method will both produce the same results, as seen in the example below.


The calculated acceleration force is the same
when using the torque method or the power method.


A Simple Example

To demonstrate the effects of power and torque, I will put three different engines into the same car. The car's speed will be the same for each of the three tests, so that the differences in the acceleration force can be seen clearly.


A sample car will be used for the comparison.

The car has tires with a 24-inch diameter, which gives a radius of 1 foot. The tire will be turning at 500 RPM, which means the car is traveling at 35.7 mph. The transmission will be in a gear which has a gear ratio of 2 : 1. The final drive ratio will be chosen in a way that satisfies the driveshaft RPM and the wheel RPM.


Details of the drivetrain layout.


BLUE ENGINE
The blue engine is running at 2000 RPM and making 200 lb-ft of torque, which is 76 horsepower. The final drive ratio has to be 2 : 1 to match up with the wheel RPM and the driveshaft RPM. With this setup, the car puts 800 lbf to the road.


The blue engine makes 76 hp, and puts down 800 lbf to the road.

GREEN ENGINE
The green engine is running at 4000 RPM and making 100 lb-ft of torque, which is also 76 horsepower. It is revving twice as high as the blue engine, but making only half the torque. The final drive ratio has to be 4 : 1 to match up with the wheel RPM and the driveshaft RPM. With this setup, the car puts 800 lbf to the road, which is the same as the force made by the blue engine.


The green engine makes 76 hp and puts down 800 lbf to the road, just like the blue engine.

RED ENGINE
The red engine is running at 4000 RPM and making 200 lb-ft of torque, which is 152 horsepower. It is making just as much torque as the blue engine, and revving just as high as the green engine. The final drive ratio has to be 4 : 1 to match up with the wheel RPM and the driveshaft RPM. With this setup, the car puts 1600 lbf to the road, which is twice the force that the other two engines made.


The red engine makes 152 horsepower, which is twice the power of the other two engines.
It is putting a 1600 lb force to the road, which is also twice as high as the other two engines.


It can be seen from the comparison of the above three engines that the most powerful one gave the highest force, and the two which made the same power as each other made the same force as each other as well. The two engines with the same power had a different amount of torque and revs, but the acceleration force was equalized by the final drive gear. This clearly shows that the engine's power, regardless of how much torque it is making or how high it is revving, determines the car's acceleration force.


Power Curves and Power Bands
Engine performance is often described by the peak power figure. A good engine will produce high peak power, and have a very high average power level as well. A graph of power with respect to engine RPM is known as a power curve, and holds important information about an engine's performance across its rev range.

It is possible for one engine to have more average power than another, even with a lower peak power figure, as seen in the example below.


Engine 1 has more peak power than engine 2, but engine 2 has more average power across the rev range.
Engine 2 would make for a faster car in most cases.


The power band is the rev range where the engine is producing an arbitrary percentage of its peak power figure. For example, the 80% power band of an engine with 500hp would be the rev range where it makes 400hp or more. A wide power band implies high average power. This will be seen later in the article.

An engine's power band can be predicted as wide or narrow based on certain characteristics. Some examples are shown in the table below.

An engine's power band can be predicted to be wide or narrow based on certain characteristics. There are many exceptions.



Comparing Two Cars
Let's compare two cars with two different engines that have the same peak power output, but different power bands.

Both cars have the same curb weight, transmission, tire radius, and so on. In fact, the only difference between the two cars will be the engines. One car will be equipped with a 500hp V8, and the other will have a 500hp turbocharged 4 cylinder engine.


The car with the V8 will be named Redneck , and the car with the 4 cylinder will be named Ricer . The V8 can rev to 6000RPM and produce a ton of torque, while 4 cylinder can to rev way up to 9000RPM and produce a fair bit of torque. To keep the math very simple, the V8 idles at 600RPM, and the I4 idles at 900RPM.

Below are plots of the two fictitious engine's torque and power curves.


Figure 1: Torque versus RPM for Redneck and Ricer. These are unrealistic curves
which have been exaggerated to help illustrate certain concepts.



Figure 2: Horsepower versus RPM for Redneck and Ricer.
This is calculated from the torque at each RPM.


Both engines produce a peak of 500hp, as specified earlier. The V8 produces 500hp at 5000RPM, and 573tq at 4250RPM, while the I4 produces 500hp at 8000RPM, and 337tq at 7500RPM.



Since the V8 was revving low, it needed to produce a lot more torque than the I4 to reach 500hp. At the same time, the I4 needed to rev higher than the V8 to produce 500hp, because it offers up less torque. Below is a comparison of the two engines' power bands.



Figure 3: Power band comparison of both engines. Note that the Redneck's average
power production (area under the curve) is higher, and that the peak power is the same, at 500hp.


If the x-axis on the above graph seems unusual, there is a separate page on comparing power curves which explains why the rev ranges are not compared directly.

Notice that while both engines have the same peak power figures, the Redneck's engine has a much wider 80% power band. This situation is a considerable advantage for the Redneck. Between the two cars, the one with the made-up V8 is going to be faster than the one with the made-up I4, because the V8 has a higher average power level throughout its rev range.



An exotic sports car, such as a Lamborghini Murcielago, will have such a wide power band that it can accelerate very hard from almost any engine RPM. This means that it can do things like go from 0-60mph in one gear. This is one of the reasons why exotics have such impressive performance.

Let's now look at how much force the Redneck and Ricer are putting to the road, which as was mentioned earlier, is the force which accelerates the car. For simplicity, both drivers will race by rolling from 20mph, flooring it, and then shifting at their redlines in each gear. Top speed will be considered redline in top gear, because the effects of aerodynamic drag are being ignored.

I'll start off by giving both of them an old TH350 3-speed automatic transmission, and a 3.73:1 final drive (axle) ratio.

Drivetrain Layout
TH350 and 3.73 Axle Gears





Figure 4: Plot of rear wheel force versus vehicle speed for Redneck and Ricer
when using a TH350 transmission and 3.73 axle ratio. The steep vertical drops
are the gear changes at redline. Gear changes take place instantaneously
for simplification.


Notice that the Redneck has a considerable advantage over the Ricer in first gear, but then not so much in second or third gear. This is because when he shifts into 2nd gear, the transmission doesn't bring him back to idle, but to approximately 3600RPM instead. The Ricer's engine also stays in reasonably high revs after the first gear change, and Figure 2 shows that he has plenty of power at high revs. Also note that the Redneck had to shift into second before the Ricer, so his ability to accelerate between 60-65mph and 100-115mph is about the same as the Ricer's.

Now, let's move into modern day by giving them both a Tremec T56 6-Speed close-ratio manual transmission.

Drivetrain Layout
Tremec T56 6-Speed and 3.73 Axle Gears





Figure 5: Plot of rear wheel force versus vehicle speed for Redneck and Ricer
when using a Tremec T56 transmission and 3.73 axle ratio.
Note that the close ratio transmission has reduced the drops in power
at each gear change for both engines, especially for the Redneck.


At certain speeds, the Ricer has caught up slightly. The close-ratio 6-speed transmission helps keep his engine revving near his power peak, and that has helped narrow the gap. The remaining dips in the Ricer's graph after each shift show the effect of having a narrow power band.

The Ricer's acceleration at low speeds is still very poor, but the Ricer has a trick up his sleeve. He is going to install a set of 5.67:1 gears in his axle without the Redneck knowing.

Drivetrain Layout
Tremec T56 6-Speed
3.73 Axle Gears for Redneck
5.67 Axle Gears for Ricer





Figure 6: Plot of rear wheel force versus vehicle speed when using a Tremec T56 transmission
and 3.73 axle ratio for the Redneck, and 5.67 for the Ricer. Note that both cars shift gears
at about the same vehicle speeds as each other now.


The Ricer has pretty much completely caught up now, especially at speeds above 40mph. With those gears he put in, he has traded his higher revs for higher torque to the wheels. Now, for certain vehicle speeds, he can accelerate alongside the Redneck. The Ricer could narrow the gap even further if he changed the transmission gear ratios to better suit his power band. The TH350 and T56 are both intended for use behind large V8 engines.

There are differences in the amount of frictional losses in gear sets with different ratios (and other factors). In the case of a 5.67:1 gear set compared to a 3.73:1 gear set fitted to road cars, the difference would be minor.

The Redneck would also see benefit from putting in different axle gears. However, this "arms race" cannot go on for long, because as the wheel torque is increased, speed is traded away. This means that more gear changes would be necessary to accelerate to a very high speed. Gear changes themselves consume valuable time. An engine with a wide power band may be able to get away with fewer gear changes during a drag race, which can be a considerable advantage.

If both cars were fitted with a Continuously Variable Transmission (CVT) that had an infinite ratio spread which can hold both engines at their horsepower peaks, the acceleration of both cars would be identical.

Low-Speed Acceleration
Even after changing the rear axle gears, the Ricer's car still could not match the Redneck's acceleration from a slow roll up to about 35-40mph. This shows that the benefits of a having a very wide power band are most significant in first gear, and is therefore an important part of tuning an engine for drag racing, where the cars start from rest.

Engines which make very little power at low RPM can be made to launch the car quickly from rest by using a high stall torque converter in an automatic transmission, or by slipping the clutch with a manual transmission.

Shift Points
When the Ricer and Redneck were racing, they were shifting gears at their engine's redlines. In many real-life cases, shifting gears earlier may be advantageous for acceleration. An engine with a power curve that begins to "fall off" at very high RPM should be shifted earlier, if doing so would bring the engine to an RPM where it is making more power. Gear shift points should always be chosen in such a way that the engine is putting out the highest average power to the wheels.

Driveability
Driveability is a subjective term used to describe the ability to "access" an engine's power. A naturally-aspirated engine with a wide power band will have very good driveability; putting the pedal to the floor at any speed in any gear should yield reasonable acceleration. On the other hand, a car with a narrow power band would not be considered as "driveable". Passing cars while cruising on the highway often requires dropping a gear to bring the engine's revs up to access the power. This is one of the reasons that luxury cars often come with large, naturally-aspirated or supercharged engines, while small, turbocharged engines are not as common and often found in more "focused" sportscars where outstanding driveability is not expected or required.

Engines are sometimes described as being "torquey". This is slang for having good driveability, a wide power band, or a lot of power at low RPM.

Streetability is another term which is often used to describe engines with the aforementioned characteristics, along with good road manners, such as a smooth idle and the ability to start in very cold temperatures.

High Torque Engines versus High Revving Engines
The torque that an engine can produce is somewhat related to the displacement of the engine. Larger displacement engines are likely to be much bigger and heavier, making them unsuitable for certain types of vehicles. This is why many small race cars have engines with small displacement, high-revving, and sometimes equipped with forced induction to produce high horsepower. Also, race cars are often given limits on displacement, which means their only chance at producing a lot of power is to rev very high or use boost. A large engine may be able to produce power more reliably than a smaller one, but not necessarily. There are plenty of big, gutless engines that don't last.

Heavy vehicles are almost always equipped with large displacement engines because they require more low-RPM power to accelerate from rest (and very low speeds). As the weight of a vehicle goes up, the acceleration from rest becomes increasingly significant. A 650hp V12 from a Ferrari Enzo could in fact tow a loaded semi at high speeds, but it's unlikely that it would have enough power at very low RPM to get the semi moving in the first place. On the other hand, a huge diesel engine can produce all kinds of power at low RPM to help get the vehicle rolling.


Conclusion

In order to quickly accelerate a vehicle, the engine must be able to make a large force at the speed that the vehicle is traveling. The amount of power determines the force that the engine can create at a given speed, whether it is a very low speed or a very high speed. It does not matter if the engine makes power by revving high or making a lot of torque, because drivetrain gearing can be used to adjust the torque and revs proportionally.

" Peak power sells cars. High average power wins races. "

A vehicle's peak torque and power figures can only give a general idea of performance. The best way to make a good comparison between vehicles is to go racing!
Related posts :